
​Matthew Lewis​

​Network Intrusion Detection System Simulator​

​Project Introduction:​

​In an era where cyber threats are evolving rapidly, understanding and testing intrusion detection​
​systems (IDS) is crucial for building resilient networks. This project is my attempt at creating a​
​self-contained simulator that generates synthetic network traffic, detects anomalies through​
​hybrid rule-based and machine learning methods, and provides real-time monitoring via a web​
​dashboard. Rather than relying on live data, which can be unpredictable and risky, this simulator​
​allows for controlled experimentation in a safe environment, making it ideal for testing detection​
​strategies, iterating on rules, and demonstrating cybersecurity concepts.​

​The core focus is on simulating realistic network intrusions such as oversized payloads or​
​unusual port usage to mimic common attack vectors, while enabling quick analysis and​
​visualization. This tool serves as a practical bridge between theoretical cybersecurity knowledge​
​and hands-on application, particularly in defense or enterprise settings where rapid prototyping​
​of IDS behaviors is valuable.​

​Solution and Core Concept:​

​To achieve effective simulation, the project integrates a full pipeline: from packet generation to​
​detection, alerting, and user-friendly visualization. By generating a mix of normal (80%) and​
​malicious (20%) traffic, it creates a battlespace-like environment for testing IDS logic without​
​external dependencies. Malicious packets are crafted with anomalies like large payloads​
​(1000–48000 bytes) or invalid ports to trigger detections, reflecting real-world threats such as​
​data exfiltration or port scanning.​

​The detection layer combines rule-based thresholds (e.g., payload >1000 bytes, high packet​
​rates) for interpretable, fast responses with an unsupervised machine learning model (Isolation​
​Forest) for spotting complex patterns. Alerts are generated with context, and results are exposed​
​through APIs and a dynamic dashboard, allowing for iteration on parameters like thresholds or​
​features without rebuilding the system.​

​This centralized yet modular approach reduces complexity while preserving key causal​
​relationships in intrusion detection, making it a reasoning tool for cybersecurity experimentation​
​rather than a production IDS.​

​Project Goals:​

​●​ ​Create a synthetic network traffic generator​



​●​ ​Accurately simulate intrusion detection via rules and ML​
​●​ ​Build an alerting system with contextual notifications​
​●​ ​Develop a web dashboard for real-time monitoring and visualization​
​●​ ​Enable easy iteration through CLI, API, and configurable parameters​
​●​ ​Ensure deployability with Docker for consistent environments​

​Scope Clarification and Non-Goals:​

​This project prioritizes simulation speed and interpretability over full-scale production features.​
​It does not handle real network interfaces or encrypted traffic analysis, focusing instead on​
​abstracted packet data to keep it lightweight and educational. These choices allow it to function​
​as a design tool for testing hypotheses in cybersecurity, not a deployable enterprise IDS.​

​Tech Stack:​

​●​ ​Python (core language for all components)​
​●​ ​Scikit-learn (for Isolation Forest ML detection)​
​●​ ​Pandas (data parsing and manipulation)​
​●​ ​Matplotlib (anomaly visualization)​
​●​ ​FastAPI and Uvicorn (web server and API)​
​●​ ​Jinja2 (HTML templating)​
​●​ ​Pytest (unit testing)​
​●​ ​Docker (containerization)​

​Implementation:​

​The simulator is structured as a modular pipeline, with key files handling specific roles:​

​1.​ ​Packet Generation (ids_simulator.py): Creates CSV logs with timestamped packets,​
​including source/destination IPs, protocols, ports, and malicious flags.​

​2.​ ​Log Parsing and Detection (parse_logs.py): Loads data into DataFrames, applies​
​time-based aggregations, runs rule-based and ML detections, and generates alerts.​

​3.​ ​Plotting (plot_utils.py): Produces time-series anomaly plots using Matplotlib's​
​non-interactive backend for server compatibility.​

​4.​ ​Web Server and Dashboard (app.py, templates/dashboard.html): Serves APIs for logs,​
​alerts, and plot generation; renders an interactive UI with auto-refreshing tables and​
​buttons for on-demand updates.​

​Usage is flexible: Run via CLI for quick tests, APIs for integration, or the full dashboard for​
​monitoring. Docker ensures easy deployment, with CI/CD via GitHub Actions for reliability.​

​This project demonstrates my ability to build end-to-end cybersecurity tools, blending data​
​science, web development, and simulation to address practical challenges in network defense.​




